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A B S T R A C T

Hematopoietic stem cell transplantation (HSCT) is curative for many non-malignant disorders. As HSCT and
supportive care technologies improve, this life-saving treatment may be offered to more and more patients.
With the development of new preparative regimens, expanded alternative donor availability, and graft
manipulation techniques, there are many options when choosing the best regimen for patients. Herein the
authors review transplant considerations, transplant goals, conditioning regimens, donor choice, and graft
manipulation strategies for patients with non-malignant disorders undergoing HSCT.
© 2023 International Society for Cell & Gene Therapy. Published by Elsevier Inc. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Hematopoietic stem cell transplantation (HSCT) is curative for
many non-malignant disorders, including primary immunodeficiency
disorders (PIDDs), primary immune regulatory disorders (PIRDs),
hemoglobinopathies, acquired and inherited bone marrow failure
syndromes (BMFSs), and metabolic disorders, with overall survival
reports of 90�100% after HSCT in most non-malignant diseases in the
contemporary era [1�5]. Many non-malignant disorders are not
imminently life-threatening, and the risk�benefit analysis of
whether to transplant a patient is different than when considering
transplant for an aggressive malignancy. At the same time, different
non-malignant disorders present unique challenges to successful
HSCT. There is a need to ensure adequate engraftment to achieve
long-term disease control while minimizing infectious complications
and exacerbation of organ dysfunction related to the underlying dis-
ease. Unlike the malignant setting, where there is a benefit to graft-
versus-tumor—which has been nearly impossible to separate from
graft-versus-host disease (GVHD)—there is no potential advantage of
GVHD for patients with non-malignant disorders. Thus, minimizing
the risk of acute and chronic GVHD remains essential in optimizing
transplant for these patients. Although HSCT from a matched related
donor has generally been considered the best choice in transplant for
malignancies, a matched related donor may not always be the first
choice for inherited genetic diseases, as family members who could
be potential donors may themselves be affected or be carriers of the
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genetic mutation, thereby limiting their use as donors in certain dis-
ease settings. Additionally, only 25�30% of children in need of a
transplant have a matched sibling donor [6]. Historically, the use of
alternative donors, including mismatched family members, matched
unrelated donors (MUDs), mismatched unrelated donors (MMUDs),
and unrelated umbilical cord blood (UCB), has led to unacceptable
rates of morbidity and mortality, with mortality of up to 10%, particu-
larly when using full-intensity myeloablation in certain non-malig-
nant disease settings [7�11]. Many patients have pre-existing
comorbidities and poor organ function due to organ involvement
related to the underlying disease, chronic inflammation, chronic
infection, and associated treatment and/or iron overload, further
increasing the morbidity of stem cell transplant. Furthermore, in
heavily transfused patients, such as those with hemoglobinopathies
or BMFSs, donor-specific antibodies frequently develop, leading to an
additional barrier to engraftment. Better understanding and selection
of elements of the conditioning regimen as well as graft characteris-
tics and manipulation have the potential to improve outcomes for
patients with non-malignant disorders undergoing HSCT across dif-
ferent platforms and donor options. As the morbidity and mortality
of transplant are lessened with improved supportive care, transplant
has become safer and better tolerated. Therefore, there is a vital need
to expand the donor pool while preserving high rates of engraftment
to offer this lifesaving therapy to more patients with non-malignant
disorders. This goal has been accomplished by several different
approaches, which the authors will review herein.

Pre-Transplant Considerations

Newborn screening has been critical in identifying patients with
sickle cell disease (SCD), the most severe forms of PIDDs, and a grow-
ing number of metabolic disorders before they develop disease mani-
festations. Infants identified in this way can benefit from anticipatory
guidance as well as disease-specific prophylaxis and/or treatment.
For example, infants identified as having adrenoleukodystrophy
undergo routine screening by magnetic resonance imaging, and those
identified as having severe combined immunodeficiency (SCID) are
typically placed in protective isolation and started on antimicrobial
prophylaxis. Although this approach has improved outcomes of HSCT
for SCID, it has not uniformly eradicated the risk of pre-HSCT infec-
tions, and management is variable at different centers [12].

For some non-malignant diseases potentially cured by HSCT, good
control of the underlying disease and disease-related comorbidities
prior to transplant is associated with better outcomes after allogeneic
HSCT. In patients who are chronically transfused, such as those with
hemoglobinopathies or BMFSs, the pre-HSCT iron status is critical,
and consideration should be given to iron chelation prior to HSCT in
patients with evidence of iron overload [13]. In hemophagocytic lym-
phohistiocytosis and other PIRDs, patients with normalized labora-
tory markers of inflammation and clinical symptoms have better
engraftment and lower rates of complications [14]. A thorough pre-
HSCT infectious evaluation should be undertaken, especially in
patients with PIDDs, and infections should be well treated and under
control at the time of transplant. In some children with metabolic dis-
orders, enzyme replacement therapy with normal measured enzyme
levels can avoid organ dysfunction prior to and during the HSCT
period [15].

Although pre-transplant infectious screening is universal, the
need for more thorough screening is essential in PIDD/PIRD patients.
If available, patients with chronic granulomatous disease should be
routinely screened with positron emission tomography/computed
tomography scan or magnetic resonance imaging prior to transplant
and any identified active lesions biopsied to detect any active infec-
tion at the time of transplant in order to provide pre-HSCT treatment
and to inform peri- and post-HSCT antimicrobial regimens [16]. Addi-
tional imaging should be considered in other patients with PIDDs/
PIRDs depending on their prior infectious history. The development
of cytomegalovirus organ disease prior to HSCT leads to high rates of
morbidity and mortality during transplant [17]. Consideration can be
given to using virus-specific cytotoxic T lymphocytes—which are
available as off-the-shelf multivalent cytotoxic T lymphocytes both
commercially and in phase 1/2 clinical trials—prior to HSCT to pro-
vide control of viral infections [18]. In developing countries, the use
of bacillus Calmette�Gu�erin is the most significant contributor to the
infectious morbidity and mortality of HSCT [19].

Statement

Early identification of diseases curable by HSCT can improve out-
comes by optimizing pre-HSCT management and the timing of HSCT.

Transplant Goals

For non-malignant diseases, the goal of HSCT is to establish robust
engraftment of healthy donor hematopoietic stem cells (HSCs). The
level of donor engraftment needed to achieve this goal varies based
on the underlying condition. In many autosomal recessive disorders,
carrier status does not cause any disease manifestations. Therefore,
in these conditions, 50% donor chimerism in the affected lineage may
be adequate to cure the underlying disease—or even as low as
20�25% in certain disease settings, such as SCD [20,21]—and patients
can remain mixed chimeras with disease cured for life as long as the
level of donor chimerism remains stable. There are a few caveats to
this statement: (i) there is a growing understanding that some car-
riers may actually be symptomatic; (ii) the long-term stability of
incomplete donor chimerism can be difficult to predict, leading to
late graft failure; and (iii) residual hematopoiesis from the host stem
cells may lead to clonal proliferation, as was elegantly demonstrated
in two patients with SCD who had graft rejection and then developed
myelodysplastic syndrome/acute myeloid leukemia (the myeloid
clone was host-derived from a TP53 mutation existing pre-SCT) [22].
Conversely, in many immune regulatory and metabolic disorders,
mixed chimerism is not adequate to cure the underlying disease.
Overall, conditioning intensity can be decreased in many but not all
of these diseases (see later discussion) in order to reduce treatment
related mortality (TRM) and decrease the risk of GVHD while provid-
ing adequate donor chimerism for disease cure.

Statement

The goal of HSCT in the non-malignant setting is to cure the
underlying disorder by providing adequate and durable donor chime-
rism while limiting short- and long-term toxicity.

Conditioning Regimen

The earliest successes in the field of HSCT for non-malignant dis-
orders depended on myeloablative regimens with either total body
irradiation [23] or busulfan [24]. Since that time, busulfan has been
the conditioning agent of choice for patients with non-malignant dis-
orders. However, like any chemotherapy agent, it has significant
short- and long-term toxicities, and can be associated with a high
burden of TRM. More recently, targeting busulfan exposure based on
pharmacokinetic monitoring to achieve targeted myeloablation or
non-myeloablation dosing has demonstrated that optimal exposure
is associated with predictability of engraftment and minimization of
toxicity in HSCT for non-malignant disorders [25,26]. Similarly, for
HSCT recipients receiving anti-thymocyte globulin (ATG) as part of
the conditioning regimen, recent dosing algorithms have been associ-
ated with improved outcomes and predictable immune reconstitu-
tion [27,28]. Many additional non-busulfan-based conditioning
regimens have been developed [29], but further pharmacokinetics



ARTICLE IN PRESS

O.R. Klein et al. / Cytotherapy 00 (2023) 1�9 3
and pharmacodynamics are needed for these regimens. Supportive
care for transplant-related toxicities has improved over the past four
decades, including the development of new anti-infectious agents,
new prophylaxis and monitoring strategies, the development of
defibrotide to treat sinusoidal obstruction syndrome [30,31] and eta-
nercept to treat idiopathic pneumonia syndrome [32], such that mye-
loablation has become a safer procedure. However, even in the
contemporary era, there is still about a 10% risk of TRM associated
with myeloablation [33�36]. Cytoreduction prior to HSCT for non-
malignant disorders must balance the higher risk of graft failure in
chemotherapy-naive patients with the risk of TRM due to pre-trans-
plant organ dysfunction and chronic or latent infections. The late
effects of the conditioning regimen also need to be considered—par-
ticularly with regard to full-dose total body irradiation and alkylating
agents—including effects on fertility and cognition and the risk of sec-
ondary malignancy. In certain non-malignant disorders with cancer
predispositions, consideration should be given to a non-busulfan-
based conditioning regimen.

In some PIDDs, conventional or T-cell-depleted HSCT from
matched or mismatched related donors is associated with adequate
engraftment, such that truly non-myeloablative conditioning can be
considered [37]. For other conditions, including hemoglobinopathies
and PIRDs, the risk of graft failure is high, and conditioning regimens
to reduce toxicity/intensity have been associated with varying
degrees of success [3,38,39]. In a large Center for International Blood
and Marrow Transplant Research analysis comparing myeloablative
(busulfan/cyclophosphamide) and reduced toxicity (busulfan/fludar-
abine) regimens in patients transplanted from matched related
donors or 7/8 or 8/8 HLA-MUDs/MMUDs for a variety of non-malig-
nant disorders, transplant related toxicities (including GVHD, sinusoi-
dal obstruction syndrome, and hemorrhagic cystitis) were decreased
in the reduced toxicity group, but overall survival was the same in
both groups [40]. Similarly, in alternative donor transplantation,
reduced intensity and non-myeloablative preparatory regimens are
associated with decreased TRM but increased primary and secondary
graft failure [38]. One approach for preventing rejection is to prolong
administration of post-HSCT immunosuppression [41�43], though
this increases the risk of infection and immunosuppression-associ-
ated toxicity. Alternatively, pre-conditioning with pre-transplant
immunosuppressive therapy, such as azathioprine and hydroxyurea
or low-dose fludarabine and dexamethasone, in HSCT recipients with
hemoglobinopathies has contributed to successful engraftment
[44,45], including in haploidentical T-cell-depleted grafts [46]. Over-
all, there is a need to develop reduced toxicity regimens with ade-
quate immune ablation to prevent rejection by a sensitized recipient
immune system and to quiesce underlying inflammation to promote
robust engraftment of donor HSCs without high rates of GVHD.

Treosulfan-based conditioning regimens have been successfully
used for many non-malignant disorders as a result of the lower toxic-
ity profile and adequate myeloablation in comparison with busulfan.
A European Society for Blood and Marrow Transplantation (EBMT)
retrospective analysis of 316 children with non-malignant disorders
transplanted using treosulfan showed high rates of engraftment and
low rates of toxicity independent of age, dose of treosulfan, other
agents used in combination with treosulfan, donor type, stem cell
source, or second or subsequent transplant [47]. Treosulfan is widely
used in Europe for non-malignant disorders [48,49] but has not yet
been approved by the US Food and Drug Administration and there-
fore has limited availability except in the setting of an emergency
investigational new drug. However, with targeted busulfan dosing,
the two chemotherapy backbones have been shown to be equally
efficacious in some non-malignant disease settings, albeit with small
numbers [50,51]. In a larger EBMT study in Wiskott�Aldrich syn-
drome, patients who underwent treosulfan-based conditioning had
higher rates of graft failure and mixed chimerism compared with
busulfan-based conditioning regimens [2]. Larger prospective
randomized studies are necessary to compare toxicities and immune
reconstitution between the two regimens. Prospective studies on
treosulfan may be needed to determine optimal exposure for ade-
quate myeloablation in patients with non-malignant disease [52].

A novel approach for conditioning prior to transplant is to use
antibodies or antibody�drug conjugates targeting HSCs specifically
or hematopoietic elements more broadly. Two classes of antibodies
have been evaluated in clinical trials: JSP191, a targeted monoclonal
antibody against CD117 (c-Kit), has been evaluated in patients with
SCID [53]; and YTH 24 and YTH 54, CD45-targeting antibodies, have
been evaluated in Fanconi anemia, metabolic disorders, and PIDDs
[54]. This promising therapy has the potential to revolutionize the
field by providing adequate myeloablation without the genotoxicity
of chemotherapy and could be broadened to other disease types
soon.

Statement

The conditioning regimen should be designed to minimize graft
failure while avoiding organ toxicity. A targeted busulfan-based con-
ditioning regimen could be considered equivalent to a treosulfan-
based regimen. Monoclonal antibody-based conditioning regimens
may lead to future successes, abrogating genotoxicity.
Donor Choice

Transplantation from an unaffected matched sibling remains the
standard of care in HSCT for non-malignant disorders. However,
donor availability for patients with non-malignant diseases is limited
because family members may also be affected or may be carriers of
the same mutation. This situation has led to broadened use of unre-
lated donors in these disease settings.

One advantage of HSCT in the treatment of non-malignant disor-
ders is that, with some exceptions, there is not the same urgency as
in the setting of high-risk malignancy. Therefore, there is usually
time to perform an unrelated donor search and plan for unrelated
donor HSCT. However, there are select patients in whom the 2�3
months it takes to find an unrelated donor may lead to additional dis-
ease or infectious complications and/or further organ damage, poten-
tially making them ineligible for transplant or putting them at higher
risk of transplant-related complications. Therefore, even a MUD who
is well matched may not always be optimal.

Currently, several groups have reported the same rate of engraft-
ment and TRM using either a 10/10 HLA-MUD or a matched sibling
donor [17,55,56]. However, based on their ethnicity, only 20�50% of
children in need of HSCT have a MUD [6,57]. Among patients of white
European descent, 75% will have an 8/8 HLA-MUD, but this number is
as low as 18�19% in patients with an African or African American
background, and 16% in patients with a black South or Central Ameri-
can background [6]. A 9/10 HLA-MMUD can also be used in this set-
ting, with similarly reported rates of engraftment and mortality [58].

For unrelated donors, both bone marrow and peripheral blood
stem cells (PBSCs) have been successfully used as a stem cell source.
Bone marrow is traditionally the preferred source because of associ-
ated lower rates of GVHD [59] compared with PBSCs, though this has
not been clearly borne out in the pediatric setting [60]. Occasionally,
unrelated donors are unwilling to donate the stem cell source
requested, so it is useful that the other stem cell source can be uti-
lized as a backup, particularly in patients who do not have other
donor options. The use of MUDs and MMUDs has been further
expanded with the recent Food and Drug Administration approval of
abatacept for GVHD prophylaxis. In the hematologic malignancy set-
ting, abatacept showed decreased rates of GVHD in 7/8 and 8/8 HLA-
MUDs when added to the standard GVHD backbone, with a more
enhanced benefit in the mismatched setting [61,62]. It has also
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demonstrated benefit in some non-malignant settings, including SCD
[63] and severe aplastic anemia [64], albeit with smaller patient num-
bers.

There are several limitations to the use of unrelated donors,
most importantly the inability to control the cell dose. In the set-
ting of non-malignant disorders, an adequate cell dose is crucial
for promoting durable engraftment [65]. Because the graft is com-
ing from an outside center, the stem cell dose can be unpredict-
able and may sometimes be inadequate for patients with higher
body weight. Additionally, timing may be urgent in some settings,
which could limit the use of unrelated donors. Finally, there is a
significant cost to using an unrelated donor, particularly if trans-
porting cells internationally, which may be prohibitive in many
parts of the world.

Umbilical Cords

UCB transplantation has been used as an alternative donor source
for many decades, including for patients with metabolic disorders
(Hurler syndrome and other leukodystrophies) [66�69]. Although
the chance of finding a 6/6 HLA-matched cord for patients of under-
represented minorities is still quite low, at 2% in African American
patients and 5% in Hispanic patients, when expanding to 5/6 or 4/6
HLA-matched cords, the likelihood increases to a respective 24% and
81% for African American recipients and 43% and 90% for Hispanic
recipients [6].

Historically, a major limitation of UCB transplantation has been
delayed immune reconstitution compared with other stem cell sour-
ces [70], particularly with the inclusion of ATG in the preparative reg-
imen [71]. Delayed hematopoietic and immunological recovery leads
to a higher incidence of infections, and delayed neutrophil engraft-
ment may also lead to prolonged hospitalization and increased TRM
[72]. In many patients with non-malignant disorders, there is a clini-
cal history of chronic infection, placing them at higher risk of infec-
tious complications, and therefore rapid and robust immune
reconstitution is of paramount importance. More recent data on UCB
transplantation without the use of ATG or with low ATG exposure
[73] show improved engraftment kinetics that are comparable to
other stem cell sources [74,75]. The Parachute-Study demonstrated
excellent immune reconstitution using individualized ATG dosing
[76], and these advances have led to significant improvements in the
infectious complications associated with UCB transplantation. Addi-
tionally, recent developments with regard to new preparative regi-
mens in the field have shown promising results, with improved
engraftment compared with older regimens in single-center experi-
ences with novel preparative regimens [77].

A typical limitation of using UCB is the stem cell dose, which is
often inadequate to support HSCT in adolescents and young adults.
The low stem cell dose may contribute to the higher rates of graft fail-
ure seen when using UCB as the donor source in patients with non-
malignant disorders [78,79]. Approaches for overcoming this limita-
tion include ex vivo stem cell expansion and the use of two UCB units
concurrently, though the latter approach has led to higher GVHD
rates [80,81]. The two units can be infused without manipulation, or
one unit can be selected for expansion of hematopoietic stem and
progenitor cells. Newer innovations in cord blood expansion further
broaden the use of this as a stem cell source option for patients, par-
ticularly larger adolescents and young adult patients. Several techni-
ques, which will be reviewed later, have been developed to expand
the umbilical cord unit ex vivo prior to infusion, increasing the
infused CD34 and total cell dose and leading to more rapid engraft-
ment. Additionally, there has been some success reported co-infusing
haploidentical related bone marrow and unrelated cord blood (hap-
loidentical cord transplantation) to speed neutrophil engraftment,
which may enhance the kinetics of immune reconstitution [82].
Finally, an important consideration is cost, which—with a cost per
unit ranging between $25,000 and $50,000—may make the use of
cord blood units prohibitive in resource-poor settings [83,84].

Haploidentical Related Donors

Historically, HSCT from haploidentical related donors was associ-
ated with higher rates of graft failure and increased transplant-
related complications in patients with non-malignant disorders
[7,85�87]. This led to many centers preferentially using MMUDs or
UCB donors over haploidentical related donors. However, more
recent studies have demonstrated low rates of rejection and TRM
with HSCT from haploidentical related donors compared with HSCT
from other donor types [88�90], such that the use of haploidentical
related donors as a stem cell source has become more common. Like
cord blood, haploidentical related donors are readily available and
usually can be flexible with timing. Over 95% of patients in need of
HSCT have a haploidentical donor, and the average patient in the US
has three potential haploidentical donors [91]. Furthermore, using a
related haploidentical donor is significantly less expensive than using
a cryopreserved cord blood unit. Another advantage of a related
donor is that if an additional infusion of cells is needed because of
graft failure or dwindling donor chimerism, haploidentical donors
are almost always readily available and eager to donate. Haploidenti-
cal transplantation requires depletion of alloreactive T cells, and this
can be accomplished by one of two extensively studied methods: in
vivo post-transplant cyclophosphamide (PTCy) or ex vivo graft manip-
ulation. See later discussion of graft manipulation strategies for fur-
ther details and Table 1 for considerations specific to different
diseases.

Statement

For patients without an unaffected matched sibling donor, the use
of alternative donors (haploidentical, unrelated cord blood, or
matched or mismatched unrelated) is safe and effective, and virtually
all patients in need of a transplant now have an available donor.

Graft Engineering/Manipulation Approaches

Post-transplant cyclophosphamide

When administered at day +3 and day +4 after infusion of non-
manipulated haploidentical HSCs, PTCy selectively depletes alloreac-
tive T cells while preserving the stem cells necessary for engraftment
and memory cells responsible for protection from infectious organ-
isms. PTCy has been successfully used to treat patients with a variety
of non-malignant disorders, with high rates of engraftment and over-
all survival, and low rates of GVHD and transplant-related toxicities
[4,45,88,92�97]. Moreover, PTCy has been successfully used in coor-
dination with other donor sources, including MUDs and MMUDs,
with improved outcomes, especially in the setting of HLA-mis-
matched donors [98�100]. PTCy is associated with low rates of acute
and chronic GVHD along with low rates of severe opportunistic infec-
tions, including Epstein�Barr virus lymphoproliferative disease
[101]. The use of PTCy is associated with rapid immune reconstitu-
tion, which is comparable to the immune reconstitution observed
with other GVHD prophylaxis regimens [102,103].

There are several benefits to using PTCy with haploidentical
related donors. Cyclophosphamide is a commonly used chemother-
apy agent and therefore readily available all over the world, including
in resource-poor areas. No additional training is necessary. PTCy is
the GVHD prophylaxis regimen of choice in most adult centers in the
US performing haploidentical transplant, with over 90% of centers
using PTCy [104]. The ability to use a haploidentical family member
donor ensures that nearly all patients in need of a transplant will
have a potential donor. PTCy has also been safely used with non-



Table 1
Special considerations by disease type.

Disease Consideration Gene therapy

Bone marrow failure syndromes T-cell depletion to reduce risk of GVHD NA
Fanconi anemia Alkylator sensitivity
Dyskeratosis congenita Alkylator sensitivity
Diamond�Blackfan anemia High rates of antibody formation causing engraftment barrier in RIC setting

Severe aplastic anemia MSD is gold standard; if no MSD, haplo or MUD/MMUD versus immunosuppression NA
PIDDs History of infection; need increased peri- and post-transplant surveillance

and more aggressive prophylaxis strategies
ADA, X-linked, RAG deficiency, Artemis SCID Radiation sensitivitya x
Wiskott�Aldrich syndrome x
X-linked CGD x
CD40L/hyper-IgM x

PIRDs
With auto-inflammation Increased risk of graft rejection; consider intensity of regimen
With autoimmunity May be engraftment barrier; consider plasmapheresis and/or rituximab
IPEX syndrome x

Hemoglobinopathies Iron overload leading to increased VOD risk; consider pre-HSCT iron chelation
SCD ABO mismatch increases risk of erythrocyte lineage engraftment failure x
Beta thalassemia High rates of allosensitization causing engraftment barrier in RIC setting;

consider desensitization protocols before HSCT
x

Metabolic disorders Improved outcomes using cord blood; size/cell dose may be an issue
Metachromatic leukodystrophy HSCT before disease is symptomatic
X-linked adrenoleukodystrophy x
Krabbe disease x
Hurler syndrome

ADA, adenosine deaminase; CGD, chronic granulomatous disease; haplo, haploidentical; IPEX, immune dysregulation, polyendocrinopathy, enteropathy, X-
linked; MSD, matched sibling donor; NA, not applicable; RIC, reduced intensity conditioning; VOD, veno-occlusive disease.

a Deficiencies of Artemis, DNA ligase IV, DNA-dependent protein kinase catalytic subunit, Cernunnos/XLF.
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first-degree haploidentical relatives [105,106]; therefore, if a patient
does not have a suitable first-degree haploidentical donor, the donor
search can be broadened to second-degree relatives, further expand-
ing the donor pool. One disadvantage of PTCy is the exposure of a
patient with a non-malignant disorder to a toxic alkylating agent.
Although many years of long-term follow-up have demonstrated
that there is no increased risk of donor-derived malignancy in
patients treated with PTCy [107], there are many well-described
short- and long-term side effects of high-dose chemotherapy. Addi-
tionally, because of the increased toxicity, there are some disorders
(Fanconi anemia, telomeropathies such as dyskeratosis congenita,
and other DNA repair disorders) in which high-dose cyclophospha-
mide should be used with caution. Successful transplants have been
performed using a reduced dose of PTCy in patients with Fanconi
anemia and dyskeratosis congenita [88,108].

Ex vivo graft manipulation

The earliest experience with graft manipulation was T-cell deple-
tion with soybean agglutinin and E-rosette depletion using haploi-
dentical related donors in infants with SCID without any preparative
regimen or additional GVHD prophylaxis [109,110]. Many patients
with SCID were successfully cured using this method [7]. This
approach is typically associated with mixed donor chimerism, which
is tolerable and durable in the setting of SCID. However, when
expanded to other PIDD/PIRD patients and non-malignant disorders,
the graft failure rate was unacceptably high [5]. Subsequent CD34+
purification with antibody-coated paramagnetic beads from granulo-
cyte colony-stimulating factor-mobilized PBSCs (so-called megadose
CD34+) was also successfully used without additional post-transplant
immunosuppression [111�114]. This approach has been used for
HSCT in patients with SCID and Omenn syndrome [111] and has been
successfully used with a reduced-intensity fludarabine-based regi-
men to treat Fanconi anemia patients [112,113]. However, this
approach is complicated by very slow immune reconstitution [114],
and therefore more refined graft manipulation strategies have been
developed. In a small study of 10 children with PIDDs transplanted
using CD3/CD19 depletion of haploidentical related donors,
researchers noted rapid early engraftment and immune reconstitu-
tion and 100% overall survival [115]. Further refinement of the graft
manipulation strategy led to development of a new method: deple-
tion of alpha/beta T-cell receptors (TCRs) and CD19+ B cells without
post-HSCT immunosuppression. This approach enriches for CD34+
cells as well as gamma/delta T cells and natural killer cells, which
provides protection from infection and allows for more rapid
immune reconstitution [90].

Alpha/beta TCR/CD19 depletion has many benefits specific to non-
malignant disorders. The lack of post-transplant immunosuppression
is ideal in this patient population—which often comes to transplant
with chronic infections or dormant viruses—allowing for rapid
immune reconstitution and clearance of infections. This platform has
been associated with very low reported rates of acute and chronic
GVHD and other transplant-related complications [90,116,117].

One major drawback of alpha/beta TCR/CD19 depletion is cost and
availability. Thus far, the necessary equipment and expertise are
available at only a handful of major medical centers, and the upfront
cost of the cell manipulation is high compared with other GVHD pre-
vention strategies. However, because there is rapid immune reconsti-
tution and no post-transplant immunosuppression, the cost of post-
transplant care is greatly reduced compared with other approaches.
There have been no direct cost comparisons between transplant regi-
mens, including the peri- and post-transplant periods, so a true
understanding of the cost difference is unknown. Overall, alpha/beta
TCR/CD19 depletion is a very appealing option and should be offered
to patients who can travel to a specialized center for this therapy.

Expanded cord blood

The limitation of low total nucleated and CD34+ cell doses in UCB
units has been overcome by the development of several ex vivo
expansion methods. These methods use a variety of cytokine or
small-molecule stimulators to exponentially enhance the stem and
progenitor cells in the cord blood product, leading to faster neutro-
phil engraftment and altering the kinetics of immune reconstitution.
The earliest method used was stimulation of one unit with Notch
ligand, and co-infusion with another non-manipulated unit, led to
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earlier neutrophil recovery supported by the manipulated unit and
ultimate long-term engraftment from the non-manipulated cord
blood unit [118]. A copper chelation technique using tetraethylene-
pentamine to expand one portion of the cord blood unit was also
developed, and co-infusing the expanded and non-manipulated frac-
tions led to improved overall survival and earlier platelet and neutro-
phil engraftment in a large multi-center trial in which historical
double UCB transplant recipients were used as controls [119]. A more
recent manipulated product developed is omidubicel (NiCord;
Gamida Cell, Jerusalem, Israel), containing a CD133+ fraction stimu-
lated with cytokines and nicotinamide, a vitamin B derivative that
inhibits differentiation and enhances functionality of CD34+ stem
and progenitor cells in vivo, and a non-manipulated CD133�/CD34�
fraction. This product led to sustained myeloid engraftment in the first
subset of patients [120], and a phase 1/2 study in patients transplanted
for malignant disorders demonstrated earlier neutrophil and platelet
engraftment and improved overall survival compared with standard
double UCB transplant controls [121]. This treatment was expanded to
SCD patients, in whom omidubicel and a myeloablative regimen were
used either alone or in combination with a non-manipulated cord
[122]. Additionally, stimulation with the pyrimidoindole derivative
UM171, an HSC self-renewal agonist, showed success, with rapid early
engraftment and low rates of GVHD in adult patients with hematologic
malignancies [123].

Statement

The broadened use of both ex vivo and in vivo graft manipulation
techniques has expanded the utilization of alternative donors for
HSCT. Although some of these approaches are thus far available at
only specialized centers in resource-rich regions, the use of alterna-
tive donors is anticipated to improve access to HSCT globally, espe-
cially with the broad availability of PTCy.

Unique Considerations for Disease Types

There are a wide range of non-malignant disorders for which
HSCT is potentially curative, each with its own set of considerations.
Moreover, within each disease category, there are nuances specific to
each disease that need to be considered when planning a transplant.
These include issues related to disease-specific considerations of
ideal donor selection, stem cell dose, pre-transplant conditioning,
required degree of immune ablation and myeloablation, post-trans-
plant monitoring, and the consideration of disease manifestations
not corrected by HSCT that may lead to increase toxicity. For exam-
ple, patients with Fanconi anemia and dyskeratosis congenita have
increased toxicity with radiation-containing regimens, and therefore
radiation-free conditioning is preferred [124]. Patients with PIRDs
and severe aplastic anemia have a higher risk of graft rejection
(10�15%) [3,38,95]; therefore, T-cell-depleted approaches need to be
carefully evaluated. Because of the presence of severe tissue inflam-
mation at the time of HSCT, patients with PIRDs and PIDDs might
experience a higher risk of severe GVHD [38,97], and thus ad hoc
GVHD prophylaxis regimens should be considered.

Finally, for many monogenic disorders, gene therapy is either avail-
able or on the horizon. However, there are limitations related to the cost
of and access to this novel therapy, degree of correction required for dis-
ease control, and potential clonal evolution of transfected cells. Addition-
ally, most current approaches to ex vivo gene therapy still require
myeloablation with busulfan, which has its own associated toxicities. See
Table 1 for a list of unique considerations for each disease type.

Statement

When planning a transplant, there are many unique considera-
tions that need to be assessed for specific diseases.
Discussion

A number of considerations are critical when planning HSCT for
non-malignant disorders. First, the goal of HSCT in the non-malignant
setting is to provide adequate donor chimerism that will cure the
underlying disorder without excessive short- or long-term toxicity.
In addition, specific considerations regarding underlying disease con-
trol and reductions in disease-related side effects going into HSCT are
critical for transplant outcomes. The conditioning regimen should
also be designed to minimize graft failure while avoiding organ toxic-
ity: a pharmacokinetically targeted busulfan-based conditioning regi-
men could be considered equivalent to a treosulfan-based regimen;
monoclonal antibody-based conditioning regimens may lead to
future successes without genotoxicity; and individualized ATG dosing
can lead to more predictable immune reconstitution, resulting in
lower TRM. Moreover, for patients without an unaffected matched
sibling donor, the use of alternative donors (haploidentical, unrelated
cord blood, or matched or mismatched unrelated) is safe and effec-
tive, and virtually all patients in need of a transplant have an avail-
able donor. The broadened use of both ex vivo and in vivo graft
manipulation techniques has expanded the utilization of alternative
donors and made transplant accessible to patients globally. However,
additional large prospective randomized clinical trials are needed to
further our understanding of the best transplant design for specific
diseases.

Conclusions

The many exciting developments in the field of transplant for
non-malignant disorders have greatly broadened the applicability of
this therapy. By reducing the toxicity of the preparative regimen,
broadening the donor pool, and reducing post-transplant immuno-
suppression and thereby enhancing immune reconstitution, we can
offer this therapy to many more patients with a wide variety of non-
malignant disorders in need of transplant. The use of PTCy has revo-
lutionized the field of transplant globally, especially for patients from
minority backgrounds with no unrelated donor options, allowing
haploidentical transplant to be offered to many more patients with
non-malignant disorders. With regard to those regimens that are rel-
atively new to the field, we do not yet know the full spectrum of late
effects that might arise, and this will have to be closely monitored.
Patients with mixed chimerism require ongoing monitoring for late
graft failure, as has been reported by some groups [38,88]. Multi-cen-
ter clinical trials for these rare disorders are essential and will allow
us to refine the preparative regimens, graft manipulation techniques,
and GVHD prophylaxis regimens, with the ultimate goal of improving
stem cell transplant outcomes for patients with non-malignant disor-
ders.
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